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Chapter 1

Introduction

Modem helicopters have a number of antennas to accomplish a wide variety

of tasks. In order to investigate the performance of an antenna mounted

on an helicopter, it is common to build scale models of the helicopter and

perform a great number of measurements. An alternative to this procedure

is to develop analytical techniques that can be used to analyze the radiation

of an antenna in the presence of a complicated structure such as an air-

craft or a helicopter. Two computational techniques that complement each

other have been developed to handle this problem. One technique, com-

mouly known as the Uniform Geometrical Theory of Diffraction (UTD)

[1,2], is a high frequency technique which can be used to compute near and

far field patterns of sources radiating in the vicinity of electrically large

objects. The second technique, known as the Moment Method (MM), is

applicable to objects which are not electrically large. [3]. Thus, for a given

problem, depending on the electrical size of the structures, one can choose

the method which is more appropriate to calculate the radiation patterns

of the antennas under study.



This report will describe the first nine months of effort in developing

a computer code which combines modern computer graphics and MM and

UTD computational techniques into an integrated package for analyzing

the far zone radiation pattern of antennas on helicopters. The code will be

referred to as the Helicopter Antenna Radiation Prediction Code (HARP),

and will be run via an X windows menu driven user interface on a Tektronics

4337 3D Graphics Workstation. For more information on the hardware, see

Appendix C. Since the MM and UTD codes are largely in place [4,22,23],

the main effort in developing HARP will be the development of a user

friendly interface to the EM codes. This interface will employ computer

graphics to allow the user to easily specify the helicopter shape and antenna

location, and then obtain radiation patterns using either the MM or UTD.

Although HARP is being designed specifically for helicopters, it is actually

applicable to almost any geometry consisting of a main body or fuselage, of

essentially arbitrary shape, with attached wings and fins. Thus, the HARP

code should be applicable to aircraft, helicopters, missiles, spacecraft, etc.

Chapter 2 of this report will present an overview of the HARP code.

Techniques for obtaining smooth and accurate spline representations of the

fuselage are described in Chapter 3. The MM and GTD modeling of the

helicopter are presented in Chapters 4 and 5, respectively. Chapter 6 is a

summary of the project status. The appendices briefly describe the MM,

the GTD, and the main Tektronics hardware and software.
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Chapter 2

Overview of the Helicopter
Antenna Radiation Prediction

Code

This section wiU present an overview of the Helicopter Antenna Radiation

Prediction Code (HARP). Figure 2.1 shows a block diagram of HARP. It

is worth noting that of the 13 "boxes", only two (i.e., "Perform MM Com-

putations" and "Perform UTD Computations") refer to electromagnetics.

The rest refer to the input, manipulation, and display of the helicopter ge-

ometry. This is an accurate reflection of the fact that the vast majority of

our effort in developing HARP deals with geometry, not electromagnetics.

The are four main parts to the flow diagram of Figure 2.1:

1. The user enters the helicopter geometry as cross sections for the fuse-

lage and flat plates for the wings and fins. A spline interpolation of

the fuselage cross sections is performed to produce a continuous sur-

face representation of the fuselage (see Chapter 3). The continuous

surface model is displayed on the CRT screen.

3



THE HELICOPTER ANTENNA RADIATION PREDICTION CODE

User Defines Geometry: I
Cross Sections for Fuselage fPlates for Wings and Fins

t
_I Spllne Interpolation of JFuselage Cross Sections

t
Display Continuous Surface Model I

, I
Construct MM I uuJ Choose Method of Analysls:

Model: Plates _ High Frequency (UTD)Low Frequency (MM)

1
uJ-_ Elllpsolds and Plates

Construct UTD Model:

J Dlsplay MM Model J

Perform MM JComputatlons

=I Display Results I---

I Dlsplay UTD Model I

Perform UTD

Computations

,----J Next Computatlon _,-

Figure 2.1: A Block diagram of the HARP code.
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. If the helicopter is to be analyzed via the MM, a plate model is

constructed and displayed on the CRT screen. The plate model is

analyzed by the low frequency method of moments Aircraft Modeling

Code (AMC) (see Appendix B or reference [22]).

J If the helicopter is to be analyzed via the UTD, a composite ellipsoid

and flat plate model is constructed and displayed on the CRT screen.

The composite ellipsoid and flat plate model is analyzed by the high

frequency UTD code NEWAIR3 (see Appendix A or reference [4]).

4. The final step is to display the antenna far zone radiation patterns.

The four sections are described in more detail below.

2.1 Section 1: User Input Geometry and

Spline Interpolation

User Defines Geometry:

The HARP system begins with the user entering the shape to be analyzed.

The fuselage is entered by defining its cross section at a number of stations

from the nose to the tail end. Depending upon complexity, typically a

fuselage can be adequately defined by 5-20 cross sections. If the fuselage

axis is the y axis, then a cross section is defined by the z, z coordinates of a

discrete number of points on the cross section. Depending upon complexity,

a cross section can typically be defined by 8-40 points. Thus, depending

upon complexity and desired accuracy, a user can typically expect to enter

between 40 and 800 points to define a fuselage. We have developed a
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graphical aid to the user in entering this data. In brief, it is assumed

that the user has a set of blueprints or engineering drawings which contain

sufficient cross sections to define the fuselage. The cross sections are placed

on a digitizing tablet, and the cross hairs of a puck are moved along the

cross section. Periodically, the digitizing button on the puck is depressed,

thus entering the coordinates of a point on that cross section. As points

are entered, the cross section is displayed in real time on the CRT screen.

To illustrate this process, Figure 2.2 shows one-half of a symmetric

fuselage cross section from the blueprints of the LHX helicopter. The points

in Figure 2.3 illustrate the digitized sample points entered by the user

to describe this cross section. The solid line shows the spline fit to the

digitized points. Note that the spline fit provides a smooth and accurate

representation of the true cross section of Figure 2.2, including both the

convex and concave portions of the cross section. Finally, Figure 2.4 shows

how several cross sections are combined to form a continuous surface model

of a portion of the LHX helicopter fuselage.

After the fuselage cross sections are entered, the next step is to define

the wings, fins, and other objects attached to the fuselage such as rotor

blades and the radiating antenna. Wings and fins will be modeled by flat

plates, while the radiating antenna will be modeled by thin wires. The

next years effort will develop graphical aids and user friendly methods for

entering this data.

Spline Interpolation of Fuselage Cross Sections:

As described above, the user defines the fuselage by a discrete number of

cross sections, each of which is defined by a discrete number of points.



This limited set of input data may not be sufficient or in the proper form

to be used by the EM codes. Thus, the next step is to make a spline

fit to the cross section data entered by the user. Spline fits to discrete

data can introduce anomalies or bumps, especially near sharp comers. We

have developed a modification of the periodic cubic splines which avoids

these anomalies. The algebraic nature of the spline fit essentially gives us a

continuous surface approximation of the fuselage shape entered by the user.

Virtually any information needed concerning the fuselage can be extracted

from this spline fit, and the spline fit now defines the fuselage to HARP.

See Chapter 3 for more details concerning the spline fit to the fuselage.

Display Helicopter Model:

The next step is to display the helicopter model on the CRT screen. The

display will be a shaded 3D color image of the continuous surface spline in-

terpolation of the fuselage and of the attached wings and fins, rotor blades,

antenna, etc. (see Chapter 4.2). If the user is not satisfied with the com-

puter model of the helicopter he can return to the geometry input sections

of the code and either correct errors in the original input data, or enter

more cross sections or more points per cross section to improve the model.

This process of alternately entering and displaying geometry continues until

the user is satisfied with the model. At this point the model can be stored

on the system disk for later retrieval.

Choose Method of Analysis:

Once the model is deemed correct, the next step is to choose the method

of EM analysis. Basically there a two choices. For electrically small bod-

ies one normally employs the method of moments (MM). For electrically



large bodies one normally uses the uniform geometrical theory of diffrac-

tion (UTD). These methods are described in Appendices A and B. Initially

the user will select the method of analysis based upon his own judgement.

Later, HARP will select and display a default method, which will be used

unless overridden by the user.

2.2 Section 2: Low Frequency MM Analysis

Construct MM Model:

If the MM is to be the method of analysis, the first step is to construct a

model which is compatible with the low frequency Aircraft Modeling Code

(AMC) [22]. AMC requires the fuselage to be defined by cross sections,

and the wings and fins by fiat plates. A major portion of the first years

effort has been to convert the continuous surface or spline fit model of

the fuselage into cross sections which are compatible with AMC. This is

not trivial because of the need for the grid formed by the fuselage cross

sections to exactly match the wing and fin attachments. In the AMC code

insuring that wings and fins would properly attach to the fuselage is the

responsibility of the user. In the HARP code it is done automatically.

Although the conversion from the continuous surface spline fit to the

fuselage cross sections required by AMC is essentially automatic, the user

does have some control. For example, he can specify the number of cross

sections and the number of points per cross section, or he can simply take

the code defaults. Note that the user initially specified the fuselage in terms

of cross sections. Next a spline fit was made to the cross sections defined by
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the user. Finally, the spline fit was re-converted back to cross sections. It

may at first seem that the spline fit was an unnecessary step since we start

and end with fuselage cross sections. However, the spline fit is essential

because the fuselage cross sections entered by the user are virtually never

the same as that needed by AMC.

AMC takes the fuselage cross section data and converts it to a tiled

surface or plate model of the fuselage. Since the wings and fins are also

modeled by plates, the low frequency model is a 100% plate model. The

MM plate model is described in more detail in Chapter 4.1.

Displa_r MM Model:

The next step in the MM analysis is to display the plate or tiled surface

model of the helicopter. The plate model will be displayed on the same

screen as the continuous surface model. If the user is not satisfied with

the plate model, he can return to the "Construct MM Model" block and

increase or decrease the number of cross sections or the number of points per

cross section. See Chapter 4.2 for more details concerning the 3D graphics.

Perform MM Computations:

Once the user is satisfied with the plate model of the helicopter, the next

step is to perform the MM computations in AMC. These involve computa-

tion of the MM impedance matrix, a matrix solution for the currents, and

finally computation of the desired far zone patterns. Depending upon the

electrical size of the helicopter, and upon the speed of the computer, this

step can take between a few minutes and several hours of CPU time.



2.3 Section 3: High Frequency UTD Analy-

sis

Construct UTD Model:

If the UTD method is to be used to analyze the helicopter, then the heli-

copter must be represented by a composite ellipsoid and fiat plates. The

composite ellipsoid will usually model the fuselage of the helicopter, while

the fiat plates will model any other structure attached to or in the vicinity

of the fuselage such as wings, fins, engines, blades, etc. The composite el-

lipsoid, which is depicted in Figure 2.5, is obtained by joining two ellipsoids

at the plane (perpendicular to the axis of the fuselage) where the antenna

is located. Note that the composite ellipsoid is uniquely specified with four

parameters which must be determined from the geometry of the helicopter.

Thus, the first step in the UTD analysis is to develop an algorithm which

will determine these four parameters for a given helicopter geometry and

antenna location.

As described in Chapter 5, a number of techniques are being studied

which will allow HARP to construct the ellipsoid with minimum user

input. For example, one method under consideration is to first consider

the cross section of the fuselage where the antenna is located and which is

perpendicular to the axis of the helicopter. In this cross section, an ellipse

is fit to the true cross section of the helicopter as shown in Figure 2.6. The

next step is to consider a second cross-section of the helicopter fuselage

which is perpendicular to the first one, but also passes along the antenna

location. This procedure will allow us to determine the four parameters of

10



the composite ellipsoid.

It is important to emphasizethat, in contrast to the moment method

technique where the model has to be accurate everywhere, the UTD model

needs to be most accurate in the vicinity of the antenna. The UTD model

of the helicopter fuselage can be less accurate far from the antenna location.

This is true clue to the fact that in the high frequency regime, radiation,

diffraction, and scattering are local phenomena. This means that the ra-

diation characteristics of an antenna mounted on a fuselage depend most

strongly on the geometry of the fuselage in the vicinity of the antenna lo-

cation, and much less on the geometry of the fuselage far away from the

antenna.

Once the composite ellipsoid is determined, the next step will be to

develop algorithms to attach the flat plates to the fuselage. Recall that the

flat plates will be used to model everything that is attached to the fuselage,

i.e., fins, wings, rotor, etc. This step can become very complicated because

the helicopter model depends on the antenna location. There are several

UTD "rules" that are helpful when one needs to decide what parts of the

helicopter should be included in the model, while leaving others out. Some

of these "rules" will also be implemented in the computer to minimize the

amount of user intervention needed.

Display" UTD Model:

The UTD model of the helicopter, consisting of a composite ellipsoid and

flat plates will be displayed on the same CRT screen as the continuous

surface model. If the user is not satisfied with the model, he can return to

the "Construct UTD Model" block and modify the parameters of the UTD

11



model. See Chapter 4.2 for more information concerning 3D graphics.

Perform UTD Calculations:

Once the user is satisfied with the UTD model, the next step is to perform

the UTD pattern computations using the UTD code NEWAIR3 [4].

2.4 Section 4: Display Results

Display Results

The final step in the analysis is to display the desired radiation patterns

on the CRT screen. These may take the form of rectangular or polar plots.

Data file will also be written onto the disk for later analysis or hard copy

display of the data.

Next Computation

After the display of the results the user may either terminate the session

or start another run. For example, the user may:

1. Create a new helicopter geometry to be analyzed

2. Modify the existing helicopter geometry

3. Change the antenna location on the helicopter

4. Analyze the existing geometry at a different frequency

5. Analyze the existing geometry by a different method (i.e. MM or

UTD)

6. Compute different radiation pattern cuts.

12
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Figure 2.3: A spllne fit is made to produce a smooth contour from the

discrete data points entered by the user.
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Figure 2.4: Several contour are combined to produce a continuous surface

model of a portion of the LHX fuselage.
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Figure 2.5: In the UTD model, the fuselage of the helicopter is modeled by

two ellipsoids, joined at the antenna location.
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Chapter 3

Aircraft Fuselage

Representation

3.1 Introduction

This chapter will describe a number of computer subroutines which have

been developed to model the fuselage of the desired aircraft with the wings

omitted. The data which defines the surface must be taken from cross-

sections available on the blueprint of the aircraft. The surface must be

smooth, meaning that it has a continuously turning normal. Of the many

possible methods of representing the surface, a tensor-product form was

selected.

3.2 Input Data from Blueprints

A subroutine has written to input points from the blueprint of the aircraft

using a digitizing puck. A point on the y-axis of the aircraft where a

cross-section is available is called a y-station. Note that the y-axis is the

longitudinal axis of the aircraft.

18



For each y-station points (x,z) are accepted from one half of the cross-

section using the digitizing puck. The body is assumed symmetrical about

the centerline. The result is displayed on the computer screen. If the cross-

section does not look good the points used to represent the section may be

modified.

A file is created for each y-station. This file includes the y-coordinate

of the station and the (x,z) coordinates describing the cross-section. A

master file is created for the entire aircraft body. This file identifies the

cross-sections describing the aircraft's fuselage.

3.3 Cross-section representation

On each cross-section a smooth curve is fit thru the (x,z) points describing

the section. Here z = zi(t), z = zi(t), and y = _ - constant for each

cross-section; the letter i is the index of the y-stations of the cross-sections

and t is a parameter described below, x(t) and z(t) are cyclic cubic splines.

The curve is smooth: the second derivatives of x(t) and z(t) with respect

to t are continuous. Points at any position on the cross-section can now

be calculated. Reference [5] describes the ideas used. (Note: Taut splines

were considered here but not used.)

The parameter t was chosen to make the cross-sections smooth but with

no ripple and to prevent spurious loops or oscillations. The parameter t

was generated using equation (3.1) below. Note: s is arc length along the

polygon the vertices of which were input from the blueprint.

20_ " (3.1)
Ath = As,(1 + _--_r )

19



Here 8 represents change in inclination of the tangent to the section,

and r represents change in distance between ix,z) points on the section. We

call this parameterization "pseudo-arc-length'. Figure 3.1 shows a cross-

section generated using equation (3.1) . Figure 3.1 also shows a cross-

section generated using a more classic method: Ath = Ass . This is called

"chord-length" parameterization. The parameter t is normalized from 0 to

1 on each cross-section.

3.4 Blending along y-axis

Blending of the (x,z)-section in the y-direction is performed using the tensor

products listed below. See Reference [9]. This is sometimes called "lofting".

i=1

(3.2)

n

Z3d = Z3d(t,y) = _ Z,(t)li(y) (3.3)
i=I

In equation (3.2) and (3.3) n --- number of y-stations and l_(y) is a natural

cubic spline with l_(yj) = _j; here yj is the j-th y-station coordinate.

Note: for l_(y) several sets of basis functions were tried; these sets in-

clude linear splines, half the Hermite basis, and exponential polynomials.

20
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Chapter 4

Moment Method Model

Development

4.1 Moment Method Plate Model

One of the main goals of this project is the automation of the entry of

geometric data for the electromagnetic analysis of helicopters. What is

implied by this, as far as the moment method is concerned, is the automated

creation, from input data entered by the user, of a model in the input format

required by the method of moments Aircraft Modeling Code (AMC) [22].

The AMC code is based upon the Electromagnetic Surface Patch Code:

VerJion IV (ESP) which models general bodies by an interconnection of

thin wires and polygonal plates [23]. In the case of modeling helicopters, the

body of the helicopter and all its wings and fins are modeled as a collection

of polygonal plates and the antenna, mounted on the helicopter, is modeled

as a wire. A requirement of this software is that the polygonal plates may

only contact one another at their edges.

To more clearly understand the problem at hand, it is necessary to

22



understand some of the input requirements of the AMC code. The AMC

program enters the aircraft geometry in the form of a set of cross sections

and attached wings. Each cross section is composed of a set of points

specifying a vertex on the body. Each of these vertices is then tied together

to form a dosed polygonai plate model or mesh of the fuselage of the

aircraft. The problem occurs when fins must be attached to the body (fins

here imply any type of aircraft control surface which wings, a tail, elevators,

or any appendages sticking out from the body). Fins may only attach along

the intersection of the polygonal plates which make up the fuselage. This

places a very tight constraint on the way the points that make up the cross

section of the body are chosen, and was the major problem in automating

the model creation process. Essentially the problem is that the wings and

fins must exactly fit into the edges of the fuselage plate grid. The problem is

especially complicated when there are several fins attached to the fuselage.

A solution to this problem, for the types of geometries encountered when

modeling helicopters, was formulated and successfully implemented. The

resulting algorithm is, to some extent, based on the scanline algorithms used

in computer graphics. Experimentation with several geometries showed

that the algorithm does produce plate geometries which are compatible

with the AMC program. As an illustration, Figure 4.1 shows a continuous

representation of a helicopter shape with wings and fins. Figure 4.2 shows

the MM plate model of this helicopter. Note that the continuous surface

of the helicopter is modeled by a number of quadrilateral plates. Also note

that this wings and fins exactly fit into the fuselage plate grid, as is required

by AMC. The arrows in Figure 4.2 indicate the surface patch dipole modes
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used by AMC to expand the current on the helicopter.

Future directions for year two of this project call for increased automa-

tion on the part of the decomposition algorithm. The current version of

the program is lacking in what might be called intelligence. What is meant

by intelligence is the making of judgements by the software concerning how

best to create the model, or for that matter, whether it should bother cre-

ating the model at all if factors indicate that the desired problem is too big

for the moment method to practically handle. Current plans call for the

addition of a simple artificial intelligence (AI) system to help in making

model creation decisions.

4.2 3D Graphics

A major appeal of modern workstation CAD packages is the ability to

draw high quality shaded color images of the objects to be studied. This

appeal is particularly acute when dealing with 3-D geometries such as com-

puter models of helicopters. A high priority in the writing of this software

package is the ability to display shaded 3-D models of the various helicopter

geometries being manipulated and analyzed. With the advent of high speed

graphics hardware facilities in modern workstations, it is possible for the

user to rotate and manipulate images of the 3-dimensional objects they are

analyzing in real time.

The 3-D graphics work done to date, on the Tektronix 4337 worksta-

tion, falls into three separate categories: The first is the rendering of the

cross sections entered by the user as a smoothly shaded body; the second
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Figure 4.1: A continuous surfacerepresentation of a helicopter
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Figure 4.2: A plate model of a helicopter with arrows indicating the MM

surface patch dipole modes used by AIVIC.
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is the rendering of the polygonal plate models used by the moment method

algorithm; and, the third is the rendering of the ellipsoid and plate approxi-

mations to the body of the helicopter for the geometric theory of diffraction

model.

The model of the cross sections entered by the user is performed by mak-

ing a spline fit to the cross sections entered, and then rendering the splines

by use of polygonal approximations and intensity interpolation (Gouraud)

shading. Any fins attached to the body are modeled as flat polygonal plates.

This model allows the user to visualize the results of the data they have

entered and to gauge whether the shape of this model resembles the shape

of the desired helicopter sufficiently to merit electromagnetic analysis.

The moment method model is created by drawing, as flat shaded poly-

gons, all the plates which make up the fuselage and the fins that are at-

tached to it. The resulting model is a shaded rendering of a polygonal

helicopter. The purpose of this model is to allow the user to see if the

plate model created is sufficiently similar to the actual helicopter that the

analysis performed would be accurate.

The geometric theory of diffraction modal involves the drawing of the

ellipsoids and plates which make up the approximation to the surface of

the helicopter. This model allows the user to see how well the geometric

theory of diffraction model fits the shape of the body at the desired antenna

location.

A problem with 3-D graphics is that they are machine dependent and

thus difficult to transport to other systems. A program which runs on one

graphics system is not very likely to run well on another. The only way to
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produce high speed (real time) graphics, is by writing programs which are

very et_icient on the hardware you are working with. There is also the prob-

lem of the capabilities of some graphics systems being far superior to those

of others. This causes problems by not allowing a program which might do

some very fancy graphics operation to be adapted onto a simpler system

which cannot handle that type of operation. To alleviate this problem, all

the 3-D graphics programs which are part of the HARP package interface

to what we call a device independent 3-D graphics library. This consists

of a small set of routines (eight routines) which, with little trouble, can be

adapted to another 3-D graphics system. The operations chosen are com-

mon to most graphics systems, and give the individual adapting the package

a great deal of freedom in the implementation of the HARP graphics pro-

grams require. The 3-D graphics routines of the HARP package call on

this standard module to perform their graphics operations. When moving

to a different 3-D graphics system, only this module must be modified for

the particular system, none of the 3-D graphics routines of the HARP

package need be changed.

The plans for graphics work for the second year of the project call for

improvements to the existing 3-D software already written. The big change

will occur in the integration of the 3-D graphics work already done into an

X Windows interactive system interface. The X Windows interface will

handle the user interaction and control of the various components of the

HARP package.
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4.3 Speeding Up the MM Analysis

The HARP code will allow a user to interactively position an antenna at a

location on a helicopter, and then to generate a radiation pattern from this

antenna. It is very desirable that this process be interactive, which means

that the generation of a pattern from an antenna mounted on a particular

helicopter should be as fast as possible.

One method for solving this problem is the matrix MM/Green's function

method for the MM solution of a two body problem [11]. In our case, the

two bodies are the antenna and the helicopter. As originally presented by

Newman, the matrix MM/Green's function technique required the inversion

of the body 2 (helicopter) block of the MM impedance matrix. For large

matrices, matrix inversion is a very time consuming numerical procedure,

and thus the matrix MM/Green's function method was slow. However,

we have re-formulated the matrix MM/Green's function solution so that it

requires only an LU decomposition of the body 2 block of the impedance

matrix. Since an LU decomposition is much faster than a matrix inversion,

the matrix MM/Green's function procedure is much faster. For example,

in one particular run we reduced the computation time from approximately

thirty minutes to two minutes.
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Chapter 5

GTD Model Development

In the high frequency regime, the analysis of the radiation of an antenna(s)

mounted on the fuselage of a helicopter will be carried out by means of

a computer code referred to as the AIRCRAFT CODE. This code, was

developed at the Ohio State University ElectroScience Laboratory, and is

based on the uniform version of the Geometrical Theory of Diffraction, also

known as the GTD or UTD technique. This implies that in order to use

this code, it is necessary to generate input data (from whatever information

is available about the helicopter) which is compatible with the input data

of the Aircraft Code. Recall that the Aircraft Code models the helicopter

by a composite ellipsoid and a set of fiat plates. Thus, the initial effort of

the GTD group's research deals with attempting to fit a composite ellipsoid

to the fuselage of a helicopter. A composite ellipsoid is formed by joining

two ellipsoids at the antenna location as shown in Figure 5.1. Once this is

done, the next stage will be to work on plate attachments to the ellipsoid

obtained so as to enable the utilization of these geometrical results as input

data to the now available Aircraft Code.
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Figure 5.1: A composite ellipsoid.

There are a number of ways that an ellipsoid can be fitted to a certain

region of the fuselage, but regardless of what procedure is followed, the final

result is a set of four parameters which completely describe the composite

ellipsoid as shown in Figure 5.1. It is very important to keep in mind that,

in general, the composite ellipsoid will fit only a localized region of the

helicopter fuselage in the vicinity of the antenna location. In other words,

when we talk about fitting a composite ellipsoid to the fuselage of the

helicopter, we are talking about local fitting in the vicinity of the radiating

antenna, in contrast to global fitting.

The four parameters of the composite ellipsoid can be determined by

either solving the three-dimensional problem directly or solving two two-

dimensional problems. The latter method was followed in our research.
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That is, first the cross section of the fuselage where the antenna is located

and which is perpendicular to the axis of the fuselage is considered. In

this cross-section, an ellipse is fit to the true cross-section of the helicopter.

This particular ellipse can have its center shifted from the origin of the

coordinate system, but it is not rotated. This means that four parameters

have to be determined as depicted in Figure 5.2, namely, the coordinates

of the center of the ellipse and its semi major and minor axes. The next

step is to consider a second cross-section of the fuselage which passes along

the antenna location and it is perpendicular to the first one. This two-step

procedure will allow us to determine the four parameters of the composite

ellipsoid.

To date, the fitting of an ellipse to the fuselage cross-section perpen-

dlcu]ar to its axis has been considered. Once this step is completed, the

next step, namely the fitting of the the fuselage cross section perpendicular

to the first one, will be easily done. Although the problem of fitting an

ellipse to a two-dimensional cross-section appears to be a simple problem,

we found in the course of our research that there are a number of difficulties

with the convergence of the solution which is obtained numerically. In gen-

eral, it appears that the solutions are very dependent in how the problem

is posed. In other words, it appears that we are dealing with an ill-posed

problem. Several approaches were followed where each approach has some

advantages and disadvantages over the others. This report discusses the

different approaches that have been considered and the problems that were

encountered.
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5.1 Method 1 - Four Nonlinear Equations

In this approach, the fours parameters of the ellipse (see Figure 5.2) are

obtained by solving four simultaneous nonlinear equations. There are many

equations from which a set of four independent equations can be obtained.

However, before the equations can be obtained, it is necessary to determine

what is known. The known parameters are: (1) the antenna location and

(2) the coordinate points of the entire fuselage cross section. Based on this

information, one can obtain additional information about the cross-section

such as the outer normal, tangent vector, and curwture of this cross section

at the antenna location.

The ellipse shown in Figure 5.2 can be described by the following equa-

tion

where (z,,v,) are the coordinates of the center of the ellipse and a and b

axe its semi major and minor axes, respectively. An alternative equation

which is more convenient to calculate the normal, tangent and curvature

vectors is as follows:

J_(V,) = $(acos V, + zc) + _(bsin V, + ye) (2a)

where

tan $ = bsin V_+ w (2b)
a cos V, + z_

From Equations (2a) and (2b), the tangent (i) and curvature (it) vectors
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at the antenna location (zo, Ya) can be easily obtained, namely

-a2(y. - y_) b2(z. - z_) (3a)
i = _t= + !)t_ ; t_ = M ; t_ = M

-a%S(z_ - a:_) -aSb4(y_' - Y_) (3b)
= a_k= + !_k_; k= = M4 ; k_ = M4

and

(ab)4 (3c)
Ikl = K- M3

where

M = [a'(y. - y_)2 + b'(z. - z_)2] '/2 (3d)

From the set of equations given above, four independent nonlinear equa-

tions can be chosen. The first set of equations that were used were Equa-

tion (1) evaluated at the antenna location (zo,y.) and at (z,,y,), a point

in the neighborhood of (z., yo), Equation (3c) and the equation for t,, the

z-component of the unit tangent vector in (3a). It is important to keep

in mind that the two components of the unit tangent vector are not in-

dependent of each other, so only one of the two components can be used.

Once the four equations are chosen, we can now proceed to solve this sys-

tem of four nonlinear equations for the four unknowns: Zc, y_, a and b. A

commonly used technique is the Newton-Raphson Method which requires a

good initial guess of the solution. That is, if the initial guess is close to the

true solutions, this method converges very fast. Otherwise, it will usually

not converge. The main difficulty with this method is then to obtain a good
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initial guess which sometimes has to be obtained by other techniques, such

as the Steepest Descent technique. A code utilizing this method [12] was

developed and tested. Note that two different LU decomposition subrou-

tines for solving the matrix equation encountered in the Newton-Raphson

code were attempted: (1) the subroutine developed by ESL, and (2) using

a software package known as LINPACK [13]. Both routines, however, gave

similar results. It was found that for the cases we considered, the Newton-

Raphson code does not converge at all when the initial guess values for

the roots (the solution) were not within approximately 4% of the exact

solution.

Hence, a more global approach is necessary which will converge to the

neighborhood of the exact solution even if the initial guess is not very

good. One such technique is the Steepest Descent method. This method

determines a local minimum in which a multi-dimensional system (in the

present case of dimension four) is transformed into a single dimensional

form [14]. Nevertheless, this technique is relatively slow compared to the

Newton-Raphson Method, but is in general global, i.e. if there is a solution,

it will converge to the vicinity of the exact solution as long as enough

iterations are performed. However, as the number of iterations increases,

the round off errors also increase. Thus, it was decided that the Steepest

Descent Technique would be used to converge the initial guessed solutions

to an accuracy whereby it would certainly be accepted as input initial

guessed solutions for the Newton-Raphson Method. This would expedite

the obtaining of the solution in general.

For the system of equations consisting of two ellipse equations, the cur-
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vature equation, and the z-component of the tangent vector equation, the

Steepest Descent Technique solution converges to less than 6% of the ex-

act solution. Since the Newton-R.aphson Method in general accepts initial

guessed values of approximately not more than 4% error, the solution gen-

erated by the Steepest Descent Technique was unusable for this purpose.

So, it was decided exclusively that only the Steepest Descent Technique

could be employed. It must be noted that, however, this technique was not

fail proof. In general, of course, the code converged to 6% of exact solu-

tion for iterations of not more than 1500 times. Occasionally, however, in

some test cases run with this technique, it failed to converge to the proper

solution if the initial guessed values were off by approximately more than

3O%.

The speed of convergence strongly depends in the type of function being

minimized. This multivafiable function, commonly referred to as the cost

function, is given by

where

4

G(fl,fz, f3,f4) = _-_.f_ (4a)
i=1

: -4- _ -1; i:1,2
(4b)

(4c)
f3 = K M3

a2(y, - Yc) (4d)
f4 =t.+ M
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Figure 5.3: A four point fit by means of the SDA.

where =1 = z° and yl = yo. It turns out that this particular cost function

is very fiat in the region where its minimum is located which implies that

the Steepest Descent technique would have difficulty to detect it. Thus, it

is necessary to choose another set of equations such that the resulting cost

function would not have the property described above. The second set of

equations that was tested consisted of four ellipse equations, namely,

= + Y,-9_ -1;i=1,4 (5)
a b

To ensure that the code was properly running, an actual sample of a heli-

copter cross section was used. In Figures 5.3-5.5 examples are shown where

for a given set of four points on the cross-section and the initial guess of

the pararneters of the ellipse, the Steepest Descent algorithm (SDA) will

calculate a new set of parameters after a number of iterations. It ap-

pears that with the present cost function, this algorithm will output the
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parameters a and b in such a way that the ellipse passes through or very

near the four points on the cross section, regardless of the initial guess.

However, it will calculate a new center of the ellipse (zc,y_) which is not

very far from the initial guess. In other words, the result depends strongly

on the initial guess of (zc,yc) but, not in the inital guess of a and b. This

can be seen more clearly in Figures 5.6-5.8. For the three cases shown in

Figures 5.6-5.8, the same set of four points on the cross section are used;

however, for each case, the initial guess of the four ellipsoid parameters

is different. This result illustrates the fact that regardless of the initial

guess of a and b, the algorithm will calculate a new pair of values such that

the new ellipse approximates the cross section very well in the vicinity of

the antenna location. However, the result seems to depend on the choice

of (z_, y_). For purposes of illustration, in Figure 5.8, the initial guess of

(zc, y_) is outside the cross section, which is not a resonable guess. The
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calculated coordinates of the center of the new eUipse are also located out-

side the cross-section. Therefore, in order to ensure that the center of the

ellipse is in the correct side of the cross section curve, the initial guessed

values must be such that (xc,yc) is located on the proper side of the cross

section curve.

To correct the defliciency of the Steepest Descent method, namely, its

slow convergence, a modified Newton-Raphson algorithm which does not

require a very good initial guess was implemented. This modified version

will be discussed in conjunction with Method 3. Furthermore, two other

techniques which are similar to the Steepest Descent technique, namely,

the Conjugate Gradient and the Powe11-Fletcher algorithms [15] wiU also

be tested in the future. In general these two later algorithms converge faster

than the Steepest Descent algorithm.

For the case where the cross section curve is concave in, the calculated

ellipse did not fit the region within the proximity of the antenna location at

all, regardless of how the points were selected. The "best" result obtained

for this case was when all the points on the cross section were chosen very

close to each other. Such a case resulted in a ellipse that was tangential

(or very nearly tangential) to the curve section containing at least one of

those points. It is important to keep in mind that this location, although

of theoretical interest, it is not expected to be a region where an antenna

wiU be installed.

Finally, for the sake of observing some significant change in the solution,

double precision was implemented in the code for the four-point system.

Several cases were run with no significant change in the solutions.
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5.2 Method 2 - N Linear Equations

A logical extension of Method 1 discussed above is to use more than four

points of the cross-section of the fuselage. Assuming that N(N > 4) is the

number of points on the cross-section, a set of N equations and 4 unknowns

has to be solved. This is an overdetermined system and the well known

Least Squares procedure will be used. In order to have a linear system of

equations, the equation of the ellipse has to be written differently, namely

Az 2 + By 2 + C= + Dy = 1 (0)

where A,B, C and D are the unknown coefficients. Note that the coef-

ficients of Equation (1) can be written in terms of the coefficients of (6),

namely,

a2 -- _E b== _E (Ta)
A B

C D

zc- 2A Yc= 2B (7b)

where

C 2 D 2

E = 1 + _-_ + _-_. (7c)

Equation (6) is the general equation of a quadratic surface, that is, de-

pending on the signs of the unknown coefficients, it represents an ellipse

(A. B > 0), a hyperbola (A. B < 0), or a parabola (A = 0, B _ 0) or

(A _ 0, B = 0). One disadvantage of the formulation above is that this

45



method doesnot guarantee that the result will be an ellipse because it could

very well yield a parabola or a hyperbola.

The linear system of equations that needs to be solved can be written

as follows:

z, B
: : : : C = (8)

2 2 D
xH Y_t x_t y_

where (rl, Yl) are the given points on the cross-section curve being fitted

by a quadratic surface defined in (1) and N is the number of points. To

solve the overdetermined system of equations (when N > 4), the LINPAK

package was used. Note that with this Least Squares method (LEM) it is

not necessary to have an initial guess of the parameters of the ellipse as

was the case in Method 1. Two examples are shown in Figures 5.9 and 5.10

where N = 5 and the points on the surface are indicated by the small

circles. The antenna location is the center point. As mentioned several

times before, the fitting is local (in the neighborhood of the antenna) and

not global.

This method was tested for several antenna locations around the cross

section depicted in Figure 5.11 for N = 5 or 7. Unfortunately, at several

locations around this cross-section, the parameters A, B, C, and D cal-

culated by the Least Squares method yielded a hyperbola instead of an

ellipse. In some other cases, no solution was found. Figure 5.11 shows

points where ellipses, hyperbolas or undetermined cases were found. The

labels E, tt and U, denote, ellipse, hyperbola and undetermined case, re-

spectively. These results depend on the number of points on the surface and
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Figure 5.11: Results obtained with a five point fit for various antenna
locations.

their location. Presumably, at the locations were hyperbolas were found, it

may be possible to obtain eUipses by choosing the points properly.

5.3 Method 3 - Method I with Penalty Func-

tion

Another technique somewhat related to Method 1 was also tried. In this

case, the equation given in (1) is used to represent the ellipse. Although
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not shown here, the minimization procedure describe in Method 1 may

yield values of a s and b2 that are negative or zero. When this happens, the

quadratic surface is no longer an ellipse. To avoid this problem, one can

add a function, usually referred to as Penalty function, which will force the

values of a 2 and b 2 to always be positive. There is not a unique way to define

this function. However, it should be zero (or a very small positive number)

when its argument is larger than a prespecified number, and a large positive

number when its argument is less than a prespecified number. In this study

the cost function was defined as follows:

{
= _. e2 / ; z <e2

0 ; otherwise (9)

where el and e2 are constants that should be specified by the user. This

Penalty function was selected to have a continuous second derivative as

shown in Figure 5.12 where el = 1 and e3 = 0.1.

The cost function can then be defined as follows

q' = 21=a a + i -1 +P(a')+P(b_)+P(RN)(IO)

where N is the number of points and (zc,yc) is the center of the ellipse.

Note that one of the points in (10) corresponds to the antenna location

(za, ya). The parameter RN is the dot product of two vectors, namely

my 6.= +  (yo- uc) (11)

where _ is the outer normal to the surface at the antenna location and

6" is the vector from the center of the ellipse to the antenna location. As

mentioned above, the Penalty function will force the values of a s, ba and RN
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to be positive. When the cost function is being minimized and any of the

values of a 2, b_ or RN is negative, the Penalty function will make the value

of _ very large. The purpose of introducing the variable RN is to assure

that the center of the ellipse will be in the correct side of the cross-section

curve, in our case, the interior of the cross-section curve. For example in

Figure 5.8, the center of the ellipse is located outside the cross-section curve.

For that case, the Penalty function P(RN) wiU be a large positive number

which will force the minimum of the cost function in (10) to a location

where the center of the ellipse is in the interior of the cross-section curve.

Recall that the results calculated for method 1 were obtained by means of

the Steepest Descent technique. In method 3, a modified Newton-Raphson

method is used. This method finds the minimum of the cost function by

finding the zero of the gradient of _; however, in contrast to the usual

Newton-Raphson algorithm, the modified version does not require a very

good guess of the unknown parameters. After running some test cases it

was found that the routine did not work very weU with single precision on

a VAX 8550 computer. After changing to double precision and adjusting

the parameters el and e_, the routine was made to converge.

A careful study of the cost function was also conducted. By making

some contour plots of _b and its gradient, we found that the minimum

of _ as well as the zero of its gradient lie in a very steep sided valley

where multiple zeros of V_b exist. This is not a very desirable condition

because it causes the search procedure to converge to a point where the cost

function may not be the minimum. We are in the process of studying the

possibility of modifying the cost function to avoid this difficulty. Another
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approach to avoid this difficulty is not to use a gradient-based method.

These techniques, such as the simplex method, do not use the gradient

of the cost function to find its minimum. The possibility of using these

techniques will be studied in the future.
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Chapter 6

Project Status

The main accomplishments to date in the development of the HARP code

are:

1. Specification and purchase of required Tektronix 4337 graphics work-

station and associated software

2. Development of computer assisted graphics method of entering fuse-

lage geometry via cross sections

3. Developed a modified periodic cubic spline to produce a smooth fit

to the fuselage, with no anomalies

4. Developed routines to display the spline fit or continuous surface

model of the helicopter

5. Conversion of the continuous surface model into a plate model for the

low frequency MM analysis

6. Successful interface of the HARP code with the low frequency AMC

method of moments analysis code
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7. Developmentof severalpossibleproceduresfor constructing the high

frequency ellipsoid UTD model of the fuselage from the continuous

surface model.

8. First stages of development of the X windows menu driven user in-

terface.

The main items proposed for the second year's effort are:

1. Develop an X windows menu driven user interface to permit the user

to conveniently execute the HARP code.

2. Continue to develop methods, employing computer graphics, to allow

the user to conveniently define the helicopter geometry. In particular,

methods for defining the shape and location of wings and fins will be

developed.

3. Improve the spline fit to the fuselage. In particular extend the present

methods so that they can treat such special cases as an abrupt change

in fuselage cross section. Also, obtain more information from the

spline fit, such as surface normals and radii of curvature (needed to

construct the UTD composite ellipsoid model of the fuselage).

4. Develop automated computer algorithms for obtaining the high fre-

quency composite ellipsoid and flat plate model of the helicopter.

5. Continue to develop graphical displays of the helicopter geometry,

including the continuous surface model, the MM plate model, and

the UTD composite ellipsoid and fiat plate model.
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6. Develop graphical methods for displaying the radiation patterns.

7. Improve the low frequency AMC or high frequency NEWAIR3

codes if necessary.

8. Expand the hardware capabilities and necessary software support to

augment the project goals in the coming year (see Appendix D).
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Appendix A

High Frequency Techniques

A computer code, written in standard Fortran 77, based on UTD solutions

has been developed at The Ohio State University (OSU) to investigate the

radiation patterns of antennas mounted on a fuselage which is modeled by

a composite ellipsoid [4]. The Aircraft code [4] was originally developed by

Prof. Burnside and the present code (NEWAIR3) is the third version.

This computer code is used to compute the near and far zone radiated

fields for antennas mounted on a composite ellipsoid and in the presence of

a set of fiat plates. Since the NEWAIR3 code is based on the uniform ge-

ometrical theory of diffraction (UTD), the structures that can be analyzed

have to be electrically large. In terms of the scattering from plate struc-

tures, this means that each plate should have edges at least a wavelength

long. In terms of the composite ellipsoid structure, its major and minor

radii should be at least a wavelength in extent. In addition, each antenna

element should be at least a wavelength from all edges. In some cases, the

wavelength limit can be reduced to a quarter of wavelength for engineer-

ing purposes. This code has been used at OSU to solve a wide variety of
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antenna radiation problems [17,18,19,20]. In addition, it has been widely

distributed and used by the aerospace industry.

Although the code was written specifically to analyze general aircraft

structures, it is enough that it can allow the user to simulate a wide variety

of complex electromagnetic radiation problems using the eUipsoid/plates

model. For example, the composite ellipsoid can be used to accurately

simulate the fuselage of an aircraft; whereas, the plates are used to represent

the wings, stabilizers, stores, engines, etc. This code can also be used to

simulate the radiation of an antenna mounted directly on a ship mast. In

this case, the mast can be modeled by the composite ellipsoid with the

other ship structures simulated by the fiat plates. Note that the plates can

be attached to the composite ellipsoid and/or to other plates. In fact, the

plates can be connected together to form a box.

This code can also be used to model a helicopter when the radiating an-

tenna is mounted on a curved surface. The helicopter can then be modeled

by the composite ellipsoid and a set of flat plates. It is important to men-

tion that the NEWAIR3 code can be used in conjunction with another

code also developed at OSU and known as the Basic Scattering Code (BSC)

[21]. In the BSC, the antenna cannot be mounted on a curved surface, but

it can be placed on a flat surface or in free space. Thus, these two codes

complement each other as shown in [20], where the NEWAIR3 and the

BSC codes are used to solve a number of radiation problems.

The NEWAIR3 code has the flexibility to handle arbitrary pattern

cuts in the near or far field regions. All the components of the radiated

electric field are computed but only the E¢ and Ee fields are stored in a
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binary file for later use; however, the code can be easily modified such that

the user can store additional field components. Note that an arbitrary an-

tenna type can be analyzed provided the current distribution across the

aperture is known. This is done by approximating the distribution by a

set of magnetic current elements mounted on the surface, or by electric

current elements normal to the composite ellipsoid surface. The magnetic

current elements have a cosine distribution along the magnetic current di-

rection and a uniform distribution in the orthogonal direction. The normal

electric current represents a monopole and its length can not be greater

than a quarter wavelength. In the case of an antenna array, where mutual

coupling effects between the array elements are important, an intermediate

calculation is necessary before the NEWAIR3 code can be used. Since the

NEWAIR3 code does not take into account the coupling between array

elements, it is necessary to first calculate the mutual coupling effects which

can be accomplished with a moment method code known as the Electro-

magnetic Surface Patch Code (ESP) [23] also available at The Ohio State

University ElectroScience Laboratory. Once the induced currents are ob-

tained by means of a moment method analysis, they can then be taken to

be part of the input data to the NEWAIR3 code.

The way the NEWAIR3 code is usually used is as follows. First, a

detailed drawing of the structure (with all the dimensions) is required.

Once this is obtained, it is necessary to know the frequency of operation,

the antenna locations and the type of antennas. Keeping in mind that the

computer model has to accurately model the structure in the vicinity of

the radiating antenna, a computer model is generated using the composite
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ellipsoid and flat plates. This means that many featuresof the structure

located far (in terms of wavelengths) from the radiating antenna can be

neglected or do not need to be modeled accurately. The next important

step is to generate a model of the radiating antennas using the monopoles

and slots mentioned above. As shown in [18,19], where a circular array

of top loaded monopoles is simulated, a wide variety of antennas can be

modeled with the help of the ESP code [23]. Once the antenna models are

obtained, the radiation patterns in the near and/or far field can then be

obtained. Note that the present code will run a pattern cut of 360 points

for a commercial aircraft model with one antenna element in approximately

1 minute on our VAX 8550 computer.
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Appendix B

Low Frequency Techniques

Low frequency or method of moments (MM) [3] techniques can be used to

accurately and efficiently analyze the radiation from helicopter antennas

when the maximum dimension of the aircraft is on the order of a few wave-

lengths or less. This section will provide a brief overview of the MM, and

its use in computing the radiation pattern for antennas on helicopters.

The MM solution for the radiation from an antenna in the vicinity of a

perfectly conducting body, such as a helicopter, proceeds in two basic steps.

The first step is to obtain an integral equation for the current distribution

on the antenna and on the conducting surface. This integral equation is

exact, and is an expression of the boundary condition of zero tangential

electric field field on the surface of the antenna and the conducting body.

The next step is to solve the integral equation using the MM. The current

is expanded in terms of N basis or expansion functions, and N weighted

averages of the integral equation are enforced. This transforms the integral

equation into an order N matrix equation which can be solved for the N

coefficients in the original expansion for the current. Once the current is

65



known, most parameters of engineering interest, such as input impedance,

mutual coupling, or radiated fields (co and/or cross polarizations), can be

found in a straight-forward manner.

The main advantage of MM solutions is high accuracy. The MM is a

direct numerical solution of the exact governing integral equation for the

current distribution. All phenomenon of the problem, including surface

waves, creeping waves, shadowing effects, etc., are automatically included

in the MM solution. As N, the number of expansion modes increases,

the MM solution can approach the exact result. A second advantage of

MM solutions is that they can in practice be applied to the analysis of

very complex or realistic shapes. The main limitation of MM solutions is

a result of the fact that the number of unknowns in the MM solution is

proportional to the electrical size of the body. For a conducting surface

typically N = 40 unknowns per square wavelength are required. On thin

wires, typically 5 unknowns per wavelength are required. The computer

storage requirements for MM solutions is proportional to N2; while, the

CPU time can be proportional to N 2 or N s. As the frequency is increased,

N must be increased, and at some point the required computer CPU time

and storage become impractical. MM solutions are most applicable when

the surface area is less than about 10 _2.

The "Electromagnetic Surface Patch" or ESP code is a user-oriented

computer code, based upon the MM, for analyzing the radiation or scatter-

ing from a general interconnection of thin wires and polygonal plates [23].

The theoretical basis of the ESP code is described in several journal articles

[24]-[34]. The ESP code is capable of analyzing an almost arbitrary thin
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wire antenna in the presenceof an almost arbitrary perfectly conducting

surface. A conducting surface, such as a helicopter, a ship, an automo-

bile, etc., is modeled as an interconnection of several polygonal plates. The

thin wires are used to model a wire antenna which may be radiating in the

presence of the conducting surface.

A special purpose version of the ESP code has recently been generated

for the purpose of analyzing the radiation from antennas on helicopters.

The code is referred to as the "Aircraft Modeling Code" (AMC) [22]. Ba-

sically the AMC provides the user a reasonably simple and straight forward

procedure for defining the helicopter geometry. The helicopter fuselage is

specified by defining its cross section at several stations from its nose to

its tail. At each station the cross section is defined in terms of a poly-

gon which approximates the actual cross section shape. AMC takes this

cross section information and generates polygonal plates which approxi-

mately model the fuselage shape. The accuracy of the model increases as

the number of cross sections increases. The user can also specify various

wings, fins, rotor blades, etc., which are attached to the fuselage, as addi-

tional polygonal plates. Finally, a few wire segments axe used to model a

transmitting antenna mounted on the fuselage or on the wings. Once the

polygonal plates and wires are defined, the radiation from the antenna can

be analyzed as in the ESP code.

The insert in Figure B.1 shows a helicopter model generated by AMC.

The fuselage cross sections are modeled by eight sided polygons. The cross

sections are interconnected to form a polygonal plate model of the fuselage.

Attached to the fuselage are other plates representing wings or fins. Finally,
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a short dipole is located on the underside of the fuselage. Figure B.1 shows

a comparison of the computed (dashed line) and measured (solid line) far

zone radiation pattern for the dipole in the presence of the helicopter.
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pattern of a short monopole on the underside of a helicopter computed by

AMC.
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Appendix C

The Tektronix 4337

Workstation

This appendix will describe the hardware platform being used to develop

the HARP code. The Tektronix 4337 workstation provides a consistent

Unix operating system with a complete implementation of the X Window

System, while providing simultaneous 3-D graphics display capabilities.

The workstation platform is a true stand-alone system, complete with

sufficient memory, hard disk storage and peripheral devices (including a

color wax printer) to completely perform all the necessary steps to imple-

ment the HARP code package. The Motorola 68020 processor is supported

by 12 megabyte of physical memory, and is configured with 1.2 gigabyte

of hard disk storage. One of the singular features of this workstation is its

ability to support both an X Window System (version 11) and true 3-D

graphics, complete with hardware rotation, _oom and pan. This allows the

operater the convenience of a menu driven windowed interface coupled with

high speed (350,000 3-D vectors/sec.) color graphic representation of the

helicopter.
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The Tektronix 4337 is capable of performing not only the user interface

portion of the HARP code, but is also well suited to tackle the necessary

electromagnetic computations for a variety of cases. For more demanding

requirements, the 4337 can readily be field upgraded to a Tektronix XD88

Superworkstation, thereby providing a six-fold increase in raw compute

power, while retaining the outstanding graphics performance. In either

configuration, the workstation provides complete network comparability to

existing systems via ethernet protocols, thereby allowing users to access the

shared compute resources of available networks.
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Appendix D

The Tektronix

Hardware/Software

Improvements

During the second year's efforts, we will be expanding the capabilities of

the system through hardware and associated software improvements. These

improvements include:

1. Tektronix 4200F4D Valuator Dials

2. Tektronix 41P42 Teknicad Software

3. Tektronix 43PTl-lF Software Terminal Interface (STI)

4. Tektronix 41PT0-1tt Graphics Kernal System (GKS)

5. Tektronix 4300P37 Fortran 77 Compiler

The first three items listed are peripheral devices which will provide en-

hanced input and output from the system for the operator. The remaining

four items are software items which are in support of the overall project

effort.
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